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ABSTRACT With the ever-growing reliance on Artificial Intelligence (AI) across diverse domains, there
is an increasing concern surrounding the possibility of biases and unfairness inherent in AI systems.
Fairness problems in automatic interview assessment systems, especially video-based automated interview
assessments, have less been addressed despite their prevalence in the recruiting field. In this paper,
we propose a method that resolves fairness problems in an automated interview assessment system that
uses multimodal data as input. This is mainly done by minimizing the Wasserstein distance between two
sensitive groups by introducing a regularization term. Subsequently, we employ a hyperparameter that can
control the trade-off between fairness and accuracy. To test our method in various data settings, we suggest
a preprocessing method that can manually adjust the underlying degree of unfairness in the training data.
Experimental results show that our method presents state-of-the-art results in terms of fairness compared to
previous methods.

INDEX TERMS Automatic interview assessment, multimodal, fairness, sensitive attribute, unfair
assumption, Wasserstein distance, adversarial, representation learning.

I. INTRODUCTION
Video interviews were widely used even before, but their
utilization has expanded significantly since the onset of the
COVID-19 pandemic to reduce physical interaction. Among
various methods, asynchronous video interviews (AVIs) are
currently the most prevalent method [1]. In AVIs, the appli-
cants pre-record their responses to predetermined questions,
then they are subsequently assessed by an interviewer who
evaluates the recorded videos. AVIs allow companies to
interview more applicants while providing applicants with
the flexibility to participate in interviews at their preferred
time and location. Because of these conveniences, AVIs are
nowwidely used online interviewmethods even after the pan-
demic. Although AVIs can provide opportunities to a larger
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pool of applicants, the task of evaluating a substantial number
of recorded videos with a limited number of interviewers can
be inefficient and time-consuming. To address the inherent
challenges associated with interview assessments relying
solely on human, automated video interview assessment
systems that combine powerful machine learning algorithms
have recently emerged [2], [3], [4], [5]. An automated
video interview assessment system gathers human-labeled
interview scores by reviewing pre-recorded interview videos
of the applicants. Subsequently, the machine learning model
is trained using pre-recorded interview videos as inputs,
aiming to predict the appropriate interview scores for each
individual.

As such, machine learning is widely applied in today’s
recruitment process, however, there is a growing concern
about whether the interview results predicted by such models
are fair. In machine learning, fairness refers to making
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FIGURE 1. Problem setting of our paper. Our problem setting can be divided into two sections: the model development and the human resources
section. In the model development section, the dataset consists of video data x and a continuous variable score ỹ . Giving x as an input to encoder
Fθ , predictor gφ predicts the score using the encoded input. In the human resources section, the recruitment team decides the decision threshold τ ,
to decide whether the candidates pass or fail the interview, based on their predicted score.

non-discriminatory decisions against certain groups or sen-
sitive attributes such as gender, age, or race. Concerningly,
it has been observed that machine learning-based recruitment
models that do not consider fairness tend to make decisions
based on sensitive attributes. In other words, they advantage
privileged group or disadvantage unprivileged group based
on unwanted bias. Note that the term ‘privileged group’refers
to a group that receives advantages due to unwanted bias,
while the term ‘unprivileged group’ refers to a group that
experiences disadvantages due to unwanted bias. One notable
example is Amazon’s artificial intelligence (AI) hiring
system, which showed a tendency to discriminate against
women in software development and technical positions [6].
In terms of legal aspects, the Equal Employment Opportunity
Commission in the United States prohibits discrimination
based on factors such as gender, race, and skin color
during hiring. In this social circumstance, research has been
conducted on fairness in automated recruitment processes,
such as resume screening [7], [8]. However, the issues of
fairness have been less explored in the context of automated
video interview assessment systems, despite their increasing
prevalence in real-world applications.

The difficulty of addressing fairness issues in video-based
interview processes stems from the following reasons.
Firstly, fairness problems in machine learning usually deal
with binary labels (e.g., pass or fail), aiming to prevent
discrimination between privileged and unprivileged groups
in decision-making. However, in the case of automated
video interview assessment problems, an automatic model
aims to predict a continuous variable score, rather than
performing binary classification. As shown in the left side of
Figure 1, candidates’ label score ỹ exists in continuous form.
Hence, an automatic model predicts continuous interview
scores for each candidate, which are later used by the
recruitment team. The recruitment team assigns a threshold
to the continuous interview scores assigned by the automatic
model, thereby making the label in binary form. Therefore,
this can be seen as a combined problem of regression and
classification. This makes it challenging to directly apply
existing fairness machine learning algorithms that are based

on binary classification. To the best of our knowledge, there
has been no fairness research that considered the conversion
from numeric variable to binary variable.

Secondly, majority of fairness research is based on
optimization algorithms such as linear programming or
convex optimization [9], [10], [11] and used tabular dataset
which has low data complexity. This makes it difficult to
apply them to large-scale multimodal datasets such as videos
due to computational costs. Also, the data complexity is not
easily handled by those methods.

Finally, there exists a problem due to the trade-off between
a model’s accuracy and fairness. When models are trained to
improve fairness, they often exhibit a decrease in accuracy
and vice versa. A major reason for this trade-off is some
models may exhibit high accuracy for specific groups, but
accuracy could be low for other groups. To enhance fairness,
efforts should be made to reduce performance disparities
among groups, but this could potentially lead to an overall
performance degradation. From a practical application per-
spective, it is important to have high accuracy while avoiding
fairness-related issues in any situation. Therefore, there is
a demand for models that can adjust fairness and accuracy
according to various situations.

To address fairness in the automated video interview
assessment system, we present a method that effectively
handles these problems. First, we propose a loss function
that can maintain fairness for arbitrary thresholds used to
determine the interview outcomes. In this point of view,
we provide a theoretical explanation that reducing the
Wasserstein distance [12], [13] between output distributions
can be an effective method to improve fairness in our problem
settings. Wasserstein distance is widely utilized in the field of
deep learning for various applications. Wasserstein distance’s
benefits include robustness, intuitive interpretation, and
stable learning in generative models. It supports optimal
matching, aids in distribution interpolation, and finds use
in diverse fields such as generative modeling (WGAN [14])
and data analysis due to its ability to accurately measure
distribution differences. Additionally, we have developed
a deep learning-based architecture and optimization to
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effectively apply fairness algorithms to multi-modal data,
aiming to reduce the aforementioned Wasserstein distance
and learn a fair representation by using an adversarial training
approach. We also employ a hyperparameter to address the
trade-off between fairness and accuracy. In Figure 1 this
hyper-parameter is denoted by λ. By tuning λ, the user of
this model can control the importance of fairness loss in the
total loss thereby controlling the trade-off between accuracy
and fairness. This control allows for the customization of the
balance between accuracy and fairness, which can be adjusted
according to various situations.

To evaluate the performance of the proposed method
in different fairness scenarios, comparative experiments
with existing fairness methods are conducted. For example,
datasets with various degrees of fairness, which were created
by intentionally manipulating the existing dataset, were used
to test our method. The number of privileged group and
unprivileged group in target variable were manipulated to
control the degrees of unfairness. It is known that the fairness
of a machine learning algorithm is highly dependent on the
degree of unfairness present in the training data. The more
unfair the training data is, themore likely themodel is tomake
discriminatory predictions. To test the proposed method on
various fairness settings, we suggest a preprocessing method
that incorporates a samplingmethod, taking into account both
the label and the sensitive attribute. This method allows for
manual adjustment of the underlying degree of unfairness in
training data.

Experiments were conducted using two different datasets
in various fairness scenarios created by the suggested pre-
processing method. Our approach has demonstrated superior
performance in terms of fairness while minimizing the
decrease in accuracy compared to existing methods across
various unfair scenarios.

In summary, the contributions of our work are as follows:
• We conduct fairness experiments using real-world video
interview assessment data.

• We propose a novel algorithm that effectively addresses
fairness issues in the automated video interview
assessment system.

• We propose an evaluation process to assess whether
the fairness of the model can be maintained even when
utilizing an unfair training dataset.

• Our algorithm shows the best trade-off curve, minimiz-
ing performance drop across various situations when
compared to existing methods.

II. BACKGROUND AND RELATED WORK
A. AUTOMATED ASSESSMENT OF JOB INTERVIEW AND
FAIRNESS
The goal of automatic video interview assessment is to predict
the hiring recommendation score based on verbal (e.g.,
speech content) and non-verbal (e.g., loudness, tone of voice,
body gestures, eye gaze, and facial expression) behaviors
in job interview videos, without any human intervention.
Due to the advancements in deep learning, automated

video interview systems have been actively researched and
developed. Nguyen et al. [15] proposed amethod that predicts
the job interview hirability score solely on the non-verbal
behaviors of both the candidates and the interviewer.
Naim et al. [16] use both verbal and non-verbal features to
assess soft skills such as friendliness, engagement, and hiring
recommendations. In addition, a system that recognizes the
non-verbal behaviors of candidates was proposed [2] and
platforms that evaluate candidates using various featureswere
suggested [3], [4].
As such, an automated interview assessment system is

being extensively researched. However, the employment
of AI technologies in the recruitment field has raised
substantial concerns about the fairness of their results.
Hunkenschroer et al. [17] conducted an ethical examination
of AI-based recruitment, focusing on human rights perspec-
tives. The authors contend that the ethical consequences
of AI-based recruitment heavily depend on the particular
contexts in which these tools are utilized.

To address fairness in the field of recruitment, much
research was conducted. Pessach et al. [7] introduced an
approach to develop a fair AI algorithm in an unbalanced data
setting, in which the sample size of unprivileged groups is
considerably smaller compared to that of privileged groups.
Additionally, Pena et al. [8] have proposed a method to make
fair decisions in an automated interview assessment system
using multimodal AI.

The aforementionedmethods are conducted using a dataset
comprising simple information such as the candidate’s
personal detail (e.g., age, residence). However, there has been
insufficient research on the fairness problem yet on thewidely
used video-based interview assessment method. The diffi-
culty of addressing fairness in this method can be summarized
in three factors. First, fairness problems in machine learning
typically pertain to binary labels, while interview assessment
problems involve continuous predictions frommodels, which
makes it challenging to directly apply existing methods.
Second, most fairness research is based on optimization
algorithms, which are computationally expensive and hinder
their application in large-scale multimodal scenarios. Finally,
the trade-off between model accuracy and fairness is
another obstacle in addressing fairness with the video-based
assessment method. It is well-known that when models are
trained with an emphasis on fairness, they often experience
a decrease in accuracy. Excessive consideration of fairness
can significantly decrease accuracy, leading to difficulties in
addressing fairness in video-based assessment.

Considering the fact that the video-based assessment
method is widely used in the real world, it is important to
improve fairness in this field.

B. FAIRNESS DEFINITIONS
In fairness problems, it is commonly stated that a model is
considered fair if its decision does not depend on sensitive
attributes such as gender, age, or race. Attributes in the dataset
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can be divided into three parts X , S, and Y . X is a collection
of non-sensitive attributes such as input and S denotes a
sensitive attribute. In this work, we set S as binary attribute,
S ∈ {0, 1}, where S = 1 means privileged and S = 0 means
unprivileged. Y is a label that we are trying to predict. Y is
often set as binary attribute, Y ∈ {0, 1}, where Y = 1 means
positive outcome like pass and Y = 0 means negative
outcome like fail. So we call that decision fair if predicted
label Ŷ and S are independent.

To quantify the discrimination between groups, various
fairness metrics have been proposed to measure the fairness
of a machine learning model.
Demographic Parity (DP) is a metric that is utilized widely

to assess fairness, specifically focusing on the disparity in
acceptance rates between different groups based on sensitive
attributes. It enforces statistical independence between the
Ŷ and S. The classification model is considered fair under
the DP criterion if DP is close to zero. DP is formulated as
follows:

DP = |PrX (Ŷ = 1|S = 0) − PrX (Ŷ = 1|S = 1)|. (1)

However, using DP as a measure to guarantee fairness
has potential drawbacks. One limitation of this metric is that
an entirely accurate classifier may be perceived as unfair
when the proportions of positive samples (PrX (Y = 1))
differ among groups. Moreover, in pursuit of DP, two similar
individuals might receive unequal treatment purely based on
their affiliation with different groups.

To address this problem, the Equal Opportunity (EO) cri-
terion incorporates the true label information (Y ) in addition
to the predicted label Ŷ . In other words, EO assesses whether
the model provides an equal chance of correctly predicting
the positive instances for all groups. The classification model
is considered fair under the EO criterion if EO is close to 0.
The equation is as follows:

EO = PrX (Ŷ = 1|S = 0,Y = 1)

− PrX (Ŷ = 1|S = 1,Y = 1) (2)

C. MECHANISMS FOR IMPROVING FAIRNESS
Mechanisms for improving fairness can be divided
into three categories: pre-processing, in-processing, and
post-processing.

Pre-processing mechanisms recognize that biased, dis-
criminatory, or imbalanced distributions of the sensitive
attribute are the cause of fairness issues. Therefore, pre-
processing mechanisms involve modifying the training data
before using it in algorithms [18], [19], [20], [21], [22], [23].
The most commonly used method is to either flip or modify
the dependent variable or otherwise change the distribution
of independent variables. This involves changing the labels of
some instances ormodifying feature representations to ensure
that the classifier is fair [18], [19], [20].
In-processing mechanisms aim to modify the training

algorithms to incorporate fairness considerations during the

training phase. Krasanakis et al. [24] learn the weight of
samples in a way that reduces biases. Yan et al. [25] aims
to achieve an equitable distribution of the population across
various sensitive groups. Zhang et al. [26] used adversarial
learning to penalize the model if the sensitive variable is
predictable from the dependent variable. The most widely
used method is adding fairness-related penalty terms in
the objective function [9], [27], [28], [29]. For example,
adding mutual information regularization terms between
a sensitive attribute S and predicted outcome Ŷ into the
objective function will guide the model to make predictions
independent of the sensitive attributes.

Post-processing mechanisms seek to improve fairness
by modifying the output scores of the classifier. For
example, it computes the threshold value where the privileged
group and unprivileged group are both fairly classified
[30], [31], [32].

Three different types of mechanisms for improving
fairness have pros and cons. Pre-processing mechanisms can
be used in any classification algorithm since they are applied
to the original dataset, not the model itself. However, they
have high uncertainty in the model accuracy since they are
not tailored for specific classification algorithms. Like pre-
processing mechanisms, post-processing mechanisms have
an advantage in their applicability to any classification
algorithms. However, as they are utilized in the latter
stages of the training process, their outcomes might be less
optimal compared to those of other types of mechanisms. In-
processing mechanisms have an advantage in that they have a
high probability of obtaining superior results with respect to
fairness and accuracy. Nonetheless, these mechanisms have
not been widely researched on high-dimensional data, since
previous works were focused on numerical datasets.

In this paper, we utilize the in-processing method among
three approaches to construct a fair model for automatic
video interview assessment. We built a fairness model for an
automated video interview assessment system by employing
a deep learning-based approach, which can incorporate the
multimodal characteristics of the data.

III. PROBLEM SETTINGS AND THEORETICAL
BACKGROUND
This paper aims to address fairness issues in automatic
interview processes. As explained in the previous section,
we define the input space as X ∈ Rd , where X ∈ X
represents the input data and S ∈ {0, 1} denotes the sensitive
attribute, and Y ∈ {0, 1} represents the label. We use a binary
classifier g : X −→ {0, 1} to determine whether a candidate
passes or fails the interview.

However, in the context of automatic interview assessment,
we assume that we have access to input data X , but lack
information about the binary label Y of the candidate. Instead,
we only have access to their continuous interview scores,
denoted as Ỹ ∈ [0, 1]. Our objective is to build an interview
assessment model that predicts the interview scores for each
candidate using X and Ỹ . Subsequently, the predicted label Ŷ
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is determined based on the distribution of the predicted score
values from candidates.

Therefore, in this paper, we assume that the binary
classification prediction is based on the score function η :
X −→ [0, 1], which estimates the predicted score for each
sample xi ∈ X . The classification decision is made based on
a threshold τ that converts the output of the score function
η into a binary output. We consider a group of threshold
classifiers {gτ }τ∈(0,1) that uses the classification rule

gτ = 1η(x)>τ (x). (3)

The threshold classifier gτ predicts pass if and only if the
output of the score function η is bigger than τ . The fairness
metric DP gap (1DP) can be defined given gτ as follows:

1DP(gτ )=|PrX (Ŷ = 1|S = 1)−PrX (Ŷ = 1|S = 0)|. (4)

In automated interviews, since the threshold for acceptance
or rejection will be determined at a later stage, we aim
to utilize a metric in this paper that ensures fairness
for all thresholds. This metric is called Strong Pairwise
Demographic Disparity(SPDD) and in this setting, the
SPDD(η) can be defined as follows:

SPDD(η) = Eτ∼U ([0,1])1DP(gτ ), (5)

where U denotes uniform distribution and η is a score
function. In this paper, we plan to utilize SPDD as a basic
metric to measure fairness, in the context of automated
interviews.

A. THE WASSERSTEIN DISTANCE
The Wasserstein distance, also known as Earth Mover’s
Distance (EMD), is a measure of the distance between
two probability distributions. It is calculated by finding
the minimum cost required to transform one distribution
into another. The Wasserstein distance is currently being
researched from a fairness perspective as it can measure the
differences in predictions between different groups in group
fairness problems [33], [34].

Given two probability density functions (PDF) p0 and
p1 both on latent space Z , satisfying

∫
c(x, y)dpi < ∞

for i = 0, 1, the optimal transport map T is the one that
minimizes the total transportation cost

T ∗ = argmin
T
∈ T

∫
Z
c(z,T (z))dp0(z), (6)

under the condition T#p0 = p1, meaning that T push forwards
p0 to p1,where T is the set of transportation maps, and c :
Z × Z −→ R is a cost function.
To find the optimal transport map more efficiently, we can

reformulate the optimal transport problem in the search for
an optimal joint PDF

min
∫
Z×Z

c(p0, p1)dγ (p0, p1), (7)

over γ ∈ 5(p0, p1) = {γ |π#γ = pi, i = 0, 1}, where πi
denote the marginal projections Z × Z Z

−→. In this setting,
we can define the k-Wasserstein distance as

Wp(p0, p1)= inf
γ∈5(p0,p1)

(
∫
Z×Z

d(p0, p1)kdγ (p0, p1))
1
k , (8)

where k ≥ 1.
Wasserstein distance is computationally expensive in many

cases, however, for the 1-Wasserstein distance, there is a
simple approach that can calculate the distance [12]

W1(p0, p1) = sup(
∫
Z
fdp0 −

∫
Z
fdp1 : ||f ||L ≤ 1), (9)

where the condition ||f ||L ≤ 1 requires that f is 1-Lipschitz
as a function from Z to R with respect to the metric d .

Wasserstein distance has gained popularity in deep
learning as a key component in loss functions. It offers
advantages over other discrepancy measures, including total
variation distance, Kullback-Leibler divergence, and Jensen-
Shannon divergence. Unlike the aforementioned dissimilarity
measures, Wasserstein distance considers the underlying
geometry and assigns a finite distance value even when two
distributions do not have overlapping support [13], [35].

B. FAIRNESS AND THE WASSERSTEIN DISTANCE
We now explain the relationship between fairness criteria
SPDD, the most suitable metric for automated interview
scenarios, and Wasserstein distance.

Let S1 and S2 be two random variables that take values in
the interval � = [0, 1]. For i = 0 and 1, let Fi represent the
cumulative distribution function (CDF) of Si. If we set µi be
the distribution on� induced by the variable Si, then we have

W1(µ0, µ1) =
∫
�

||F0(τ )− F1(τ )||dτ. (10)

Importantly, we can discover a direct relationship between
theWasserstein distance in one-dimensional distributions and
the fairness concepts of SPDD. Let’s examine the conditional
distributions Di that are dependent on sensitive groups,
represented as L(X |S = i), where i takes values 0 and 1.
Assuming we have a trained score function η : X →

[0, 1], we can represent distributions as the push-forward
distributions

µi = η#Di, i = 0, 1. (11)

Then we can obtain

W1(µ0, µ1)

=

∫ 1

0

∣∣∣∣ Pr
X∼D0

(η(X ) ≤ τ )− Pr
X∼D1

(η(X ) ≤ τ )

∣∣∣∣ dτ
=

∫ 1

0

∣∣∣∣ Pr
X∼D0

(η(X ) > τ )− Pr
X∼D1

(η(X ) > τ )

∣∣∣∣ dτ
=

∫ 1

0

∣∣∣∣PrX (Ŷτ = 1 | S = 0)− Pr
X
(Ŷτ = 1 | S = 1)

∣∣∣∣ dτ
= Eτ∼U ([0,1])1DP(hτ ),
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and the last term is precisely the SPDD that we defined
previously.

Based on above mentioned observations, we have noticed
that controlling the 1-Wasserstein between distributions of
score values effectively regulates the SPDD. Now, utilizing
this property, we propose approaches in the context of auto-
mated interview problems that can reduce the Wasserstein
distance in output distributions between privileged and
unprivileged groups.

IV. PROPOSED METHODS
A. NOTATIONS
We consider classification tasks in which X ∈ Rd is an
input space and Z ∈ Rk is a latent space. The encoder
Fθ : X → Z , parameterized by θ , yields the representation
from input. Z can be expressed as Z = F(X ). Note that
since we are dealing with three types of data (video (V ),
text (T ), and audio (A)), we have inputs, encoders, and
representations for each type of data. Therefore, X , F , and Z
each consists of (XV ,XT ,XA), (fV , fT , fA), and (ZV ,ZT ,ZA).
Then, we concatenate representations of each input. As a
result, concatenated representation ZC can be expressed as

ZC = [ZV ,ZT ,ZA]

= [fV (XV ), fT (XT ), fA(XA)]. (12)

Using concatenated representation ZC , regressor gφ : Z →
[0, 1] and adversary hψ : Z → {0, 1}, each parameterized by
φ and ψ , predicts Ỹ and S respectively.

B. IMPROVING FAIRNESS VIA ADVERSARIAL TRAINING
In this paper, we try to use the in-processing approach
for fairness, as we aim to encode representations that are
independent of sensitive attributes. We do this by training a
classifier called adversary h, that predicts sensitive attribute
S using encoded representation Z , encoded by encoder F ,
as input. Note that Z is equivalent to F(X ). Since S is binary
we can define

Dθ,ψ (X , S) = E
X ,S

[S · log(h(F(X )))

+ (1− S) · log(1− h(F(X )))] (13)

that is the negative of the binary cross-entropy loss. The
adversary’s parameters ψ are parameterized to maximize
D, while the encoder’s parameters θ are parameterized to
minimize D [36]. The minimax problem can be shown as
follows:

min
θ

max
ψ

Dθ,ψ (X , S). (14)

C. IMPROVING FAIRNESS VIA WASSERSTEIN DISTANCE
The purpose of this work is to train a model with a regressor
that is fair with respect to sensitive attributes. As mentioned
earlier, the reduction of Wasserstein distance is the key
to achieving fairness in our settings. Therefore, we utilize
the 1-Wasserstein distance between sensitive groups as a

regularization term in our objective function (loss function)
of the regressor.

However, there is a problem that the exact computation of
true label distributions is intractable. For this reason we use
empirical distributions µ̂, defined by

µ̂a =
1
|Bs|

∑
i∈Bs

δgφ◦fθ (Xi) (15)

for s = 0, 1, where Bs is a subset of index set

Is = {i = 1, . . . , n : si = s} (16)

and δp is the Dirac measure centered at p ∈ R. Note that
each δ follows delta distributions, thereby the distributions in
(15) are uniform mixtures of delta distributions centered at
the sets Bs of samples drawn from the respective underlying
distributions (s = 0, 1). Using this empirical distribution,
we define the regularization term

LW = W1(µ̂0, µ̂1). (17)

Note that as mentioned in III, minimization of (17) can be
viewed as stochastic minimization of SPDD.

Let, µ̂0 =
1
m

∑m
i=1 δpi and µ̂1 =

1
m

∑m
i=1 δqi , where

pi, qi ∈ R for i = 1, . . . ,m. Let ρ : Rm
→ Rm be a sorting

function such that given a vector r = (r1, . . . , rm), outputs
ρ(r) = (rσ (1), . . . , rσ (m)) where σ : 1, . . . ,m → 1, . . . ,m
is a rearrangement of indices such that 1 ≤ i < j ≤ m
implies rσ (i) ≤ rσ (j). In this setting, the optimal coupling γ ∗ is
simply the assignment ρ(p)i 7→ ρ(q)i for each i = 1, . . . ,m.
Therefore, the 1-Wasserstein distance between µ̂0 and µ̂1 is
given by

W1(µ̂0, µ̂1) =
1
m

m∑
i=1

|ρ(p)i − ρ(q)i|, (18)

where m is the size of the mini-batch. Using equation (18),
we minimize the 1-Wasserstein distance between two one-
dimensional distributions, in our setting distance between the
privileged group and the unprivileged group.

Even though it is a simple method, estimating empirical
distributions like (18) is useful in computing empirical
versions of the 1-Wasserstein distance. This is because
W1 distance can be accurately computed using a sim-
ple closed-form expression for one-dimensional empirical
distributions with an equal number of point masses [37].
It is important that the number of point masses has to

be the same for the distributions. In our implementation,
this condition will always be satisfied, since B0 and B1 are
batches for stochastic gradient descent, and their size is fixed
to constant m.

D. OBJECTIVE FUNCTION
The adversary hψ and regressor gφ seeks to minimize its loss
on predicting S and Ỹ respectively from Z . Note that Ỹ is a
continuous interview scores of candidates that we have access
to. Also encoder fθ seeks to encode inputs to minimize the
regressor’s loss and maximize the adversary’s loss. Let LReg
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Algorithm 1 Training Procedure for the Proposed Method

Input: Labeled dataset (XV ,XA,XT ) ∈ X , S and Ỹ
Output: Trained encoder Fθ , trained regressor gφ and adversary hψ

1: Initialize the multimodal model with random parameters.
2: Init encoder (fV , fA, fT ) ∈ Fθ
3: Init regressor gφ that predicts score Ỹ
4: Init adversary hψ that predicts sensitive attribute S
5: Set hyperparameters
6: WD loss weight λW , Adversarial weight λAdv
7: Batch size m, epochs e, Learning rate for regressor ηReg and adversary ηAdv
8: for each epoch in e do
9: for each batch B, where | BS=0 | + | BS=1 |= m do
10: Calculate WD loss about sensitive attribute:
11: Extracts representations in latent space Fθ (BS=0) and Fθ (BS=1) from each batch;
12: Compute regressor output gφ(Fθ (BS=0)) and gφ(Fθ (BS=1)) using representations as inputs;
13: Sort gφ(Fθ (B0)) with ρ such that ρ(gφ(Fθ (X )))i ≤ ρ(gφ(Fθ (X )))i+1,∀X ∈ BS=0, 1 ≤ i < m;
14: Sort gφ(Fθ (B1)) with ρ such that ρ(gφ(Fθ (X )))i ≤ ρ(gφ(Fθ (X )))i+1,∀X ∈ BS=1, 1 ≤ i < m;
15: k = min(len(BS=0), len(BS=1))
16: LW = 1

k

∑k
i=1 | ρ(gφ(Fθ (B0)))i − ρ(gφ(Fθ (B1)))i |

17: Calculate Supervised loss:
18: LMSE =

∑
(Xi,Ỹi)∈B

l(gφ(Fθ (Xi), Ỹi)))
19: Calculate total loss:
20: LReg = LMSE + λWLW
21: Update φ and θ with gradient descent;
22: φ←− ηReg∇φLReg
23: θ ←− ηReg∇θLReg
24: Calculate adversary loss:
25: Extracts representations in latent space Fθ (B) from each batch;
26: Compute adversary output hψ (Fθ (B)) using representations as inputs;
27: LAdv = λAdv

∑
(Xi,Si)∈B l(hψ (Fθ (Xi), Si)))

28: Update ψ with gradient descent:
29: ψ ←− ηAdv∇ψLAdv
30: Update θ with reverse gradient descent:
31: θ ←− (− ηAdv∇θLAdv)
32: end for
33: end for

denote a suitable regression loss and LAdv denote a suitable
classification loss. For LReg, we use mean squared error with
(17) added as a regularization term. So LReg can be defined as

LReg(X , Ỹ ) = E
X ,Ỹ

∥∥∥g(F(X ))− Ỹ∥∥∥2
2
+ λW · LW . (19)

Note that λW is a hyper-parameter for balancing fairness and
accuracy.

For LAdv, we use the negative of the binary cross-entropy
loss (13), defined in Section IV-B.

LAdv(X , S) = Dθ,ψ (X , S) (20)

We can train the model by optimizing the following two
equations sequentially.

min
φ,ψ

LReg(X , Ỹ )+ LAdv(X , S) (21)

TABLE 1. Underlying bias of each dataset. We measured the inherent bias
in the dataset by measuring DPdata and SPDDdata. It can be observed
that the degree of unfairness increases as the value of α increases.

min
θ
LReg(X , Ỹ )− LAdv(X , S) (22)

Algorithm 1 outlines the detailed training procedure for the
proposed method.
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FIGURE 2. Overall architecture of the proposed model. The model aims to make fair predictions using multiple modalities, including video,
audio, and text input. Each modality pre-processing step extracts relevant features. The preprocessed features are used as inputs for each
model in the multimodal architecture. The encoded features obtained through the model are used to predict scores using a multi-label
predictor, and gender is predicted using a sensitive attribute classifier.

V. EXPERIMENTAL SETTINGS
A. DATASET
1) HIRING RECOMMENDATION DATASET
The Hiring Recommendation (HR) dataset consists of
real-world job interview videos with candidates, speaking
in Korean language. In each video, participants respond to
a pre-defined question within 90 seconds. These videos are
annotated with the gender of the participant and the hiring
recommendation score [16] assigned to them as a measure
of their likelihood of securing a job offer. The target label of
hiring recommendation score is provided by three interview
experts with a minimum of 20 years of experience. To ensure
the validity of the label, the same videos are assigned to
annotators, and the average hiring recommendation score is
used. The resulting dataset contains data from more than
three thousand interviewees. We employed a five-fold cross-
validation approach for training and evaluation, where 80%of
the total data is utilized for training and the remaining 20%
for the test dataset. In the HR dataset, target label Ỹ represents
the hiring recommendation score, and sensitive attribute S
represents gender. Input variable X is composed of audio,
video, and text data from the candidate’s interview video.

2) FIRST IMPRESSIONS DATASET
To ensure that our fairness approach performs well with
another dataset, we additionally used the First Impres-
sions (FI) dataset [38]. This dataset was also used in
the 2017 Chalearn Lab challenge at Computer Vision and
Pattern Recognition (CVPR). It consists of 10,000 video
clips extracted from over 3,000 different high-definition (HD)
YouTube videos of people speaking in English while facing a
camera. These videos are labeled with gender and continuous
variable interview that indicate whether the subject should be
invited for a job interview. The 10,000 clips are split into a
60% training set, a 20% validation set, and a 20% testing set.
Along with the video clips, we also used their transcriptions
provided by Chalearn Lab in our study. In the FI dataset, the

target variable Ỹ is Interview and the sensitive attribute S is
gender. Input variable X is composed of audio, video, and
text data from the YouTube video.

3) TARGET SETTINGS
The target variable Ỹ is termed score in both datasets. Data
samples with a score of 0.5 or higher, are categorized as the
high-scoring candidates (score ≥ 0.5), while data samples
with a score below 0.5, are the low-scoring candidates
(score < 0.5). For the sensitive attribute S, female is set as
a privileged (priv.) group (S = 1) and male as unprivileged
(unpriv.) group (S = 0).

B. DEGREE OF UNFAIRNESS AND DATASET
MANIPULATION
In an automated job interview assessment, the fairness of the
model is significantly influenced by the proportion of dif-
ferent demographic group members among high-scoring and
low-scoring candidates within the training data. Therefore,
we present α, an indicator that can quantitatively measure
the difference in the proportion of each sensitive attribute
between the high-scoring and low-scoring groups, as follows:

αhigh =
Pr(S = 1 | Ỹ ≥ τ )

Pr(S = 0 | Ỹ ≥ τ )
(23)

αlow =
Pr(S = 0 | Ỹ < τ )

Pr(S = 1 | Ỹ < τ )

α =
αhigh + αlow

2
,

where αhigh is the proportion of the number of priv. to
the number of unpriv. in the high-scoring group, and αlow
represents the proportion of the number of unpriv. to the
number of priv. in the low scoring group. The α is the
average value of αhigh and αlow. A higher α value indicates
significantly more candidates with a specific sensitive
attribute in the high and low-scoring groups. Tables 2 and 3
illustrate the difference in proportions of candidates with
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TABLE 2. Distribution of target(score) and sensitive attributes(gender) in the HR unfair dataset (threshold = 0.5). Samples with a score of 0.5 and higher
are classified as a high-scoring group, and samples of lower than 0.5 are classified as a low-scoring group. In the unfair dataset, α represents the degree
of unfairness. As α increases, the proportion of priv . in the high-scoring group increases, and the proportion of unpriv . in the low-scoring group
increases. That is, the dataset becomes more unfair. We conducted experiments with datasets with α values of 2, 3, and 4.

FIGURE 3. Histogram of score in HR dataset, Increasing the α value made the dataset more unfair. υ is the average score for each sensitive attribute
S. As the value of α increases, it can be observed that the average of unpriv. υunpriv gradually decreases and the average of priv. υpriv gradually
increases. In other words, in the low-scoring group, the number of unpriv. is distributed relatively higher than the number of priv.. Whereas in the
high-scoring group, the number of unpriv. is distributed lower than the number of priv.

respect to the score group and sensitive attribute. As α
increases, a significant difference can be observed in the
composition ratios between the priv. and unpriv. groups in
both high and low-scoring groups.

To verify that our proposed method can be applied even
in unfair situations, we intentionally manipulated the original
train dataset by experimenting on various settings of α.
Therefore, given the uniform distribution of score for both
sensitive attributes in the distribution of the HR and FI
datasets, we used random sampling to create an unfair subset.
Specifically, in the high-scoring group, the number of unpriv.
candidates are manipulated to be smaller than the number of
priv. candidates, while the number of priv. candidates in the
low-scoring group are adjusted to be less than the number of
unpriv. candidates. For example, α = 2 means that in the
high-scoring group, the number of priv. is twice as many as
the number of unpriv.. Therefore, we achieve an unfair dataset
by manipulating the number of priv. in high-scoring group
and manipulating the number of unpriv. in low-scoring group
The experiment was conducted in three different α settings
(α = 2, 3, 4). Figures 3 and 4 show the distribution of the
sensitive attribute as α changes. A significant difference is
shown in the distribution of sensitive attributes between the
high and low-scoring groups.

A t-test and one-way ANOVA were conducted to confirm
that the distribution between sensitive attributes was different
according to the α value. The results confirmed that the
P-value is less than 0.05, and the distributions among the
sensitive attribute groups were different.

It’s worth noting that the test dataset has an even
distribution of scores across sensitive attributes without
manipulation. It is necessary to conduct experiments under
realistic conditions. On the HR dataset, we use five-fold
cross-validation where 80% of the total data is utilized for
training and the remaining 20% is the test dataset. For the FI
dataset, holdout cross-validation is used for training.

To measure the unfairness of the dataset, we utilized
modified versions of the fairness metrics DP and SPDD.
In the DP and SPDD metrics, the predicted variable Ŷ
is replaced with the target variable Ỹ , referred to as the
DPdata and SPDDdata. Table 1 shows how much bias
exists in the subset of unfairly manipulated train datasets.
We experimentally confirmed the extent to which the model
learns manipulated train unfair subset bias and how bias
affects the score Y prediction. By setting these unfair datasets
and letting the model learn the bias in them, we can check
the results thereby proving and understanding the efficiency
of our proposed method. The results of this are discussed in
section VI-A.

C. PRE-PROCESSING
We utilized multitask cascaded convolutional networks
(MTCNN) [39] to extract the bounding boxes of faces present
in the video frames. We then cropped the video frames
along the bounding boxes and resized them to 112 × 112.
We divided the video into 30 segments of equal length and
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TABLE 3. Distribution of target(score) and sensitive attributes(gender) in the FI unfair dataset (threshold = 0.5). Samples with a score of 0.5 and higher
are classified as a high-scoring group, and samples of lower than 0.5 are classified as a low-scoring group. In the unfair dataset, α represents the degree
of unfairness. As α increases, the proportion of priv . in the high-scoring group increases, and the proportion of unpriv . in the low-scoring group
increases. That is, the dataset becomes more unfair. We conducted experiments with datasets with α values of 2, 3, and 4.

FIGURE 4. Histogram of score in FI dataset, Increasing the α value made the dataset more unfair. υ is the average score for each sensitive attribute S.
As the value of α increases, it can be observed that the average of unpriv. υunpriv gradually decreases and the average of priv. υpriv gradually
increases. In other words, in the low-scoring group, the number of unpriv. is distributed relatively higher than the number of priv.. Whereas in the
high-scoring group, the number of unpriv. is distributed lower than the number of priv.

randomly sampled one frame from each segment. As a result,
30 sampled frames were finally used as the video input XV .
Next, we utilized an open-source library called pyAudio-

Analysis [40] to extract the audio features from a raw wave
file. The extracted audio features include various features
including Mel Frequency Cepstral Coefficients (MFCCs).
To align with the number of video frames, the resulting
features have dimensions of 30 × 68. These features were
used as the audio input XA. We used the same pre-processing
method for both the video and audio data in both the HR and
FI datasets.

Lastly, in the HR dataset, the text is obtained by utilizing
the Google Speech-to-Text API,1 which transcribes spoken
words into text. The resulting text is then tokenized using a
BERT tokenizer [41]. For the FI dataset, the text is obtained
from the transcription CSV file provided by Chalearn Lab,
which is also tokenized using the BERT tokenizer.

D. BASELINES
To demonstrate that our proposed method successfully con-
trols the trade-off between accuracy and fairness, we compare
our method with the following three models.
Vanilla: A trained model Fθ , gφ without fairness con-

straints, using only MSE loss. The architecture of this model
is identical to that of our proposed model but does not include
an adversary hψ .
Data Balancing (DB) [25]: We utilized a resampling

strategy based on the sensitive attribute and data distribution.
First, we calculate the histogram of the score for each

1https://cloud.google.com/speech-to-text/docs

sensitive attribute. Then we resample the data within the priv.
group by down-sampling. The network architecture is the
same as that of the Vanilla model.
Adversarial Learning (Adv) [42]: Trained the multimodal

encoder Fθ and the regressor gφ using adversarial loss:

Ladv = Lreg − λ ∗ Lcls. (24)

where Lreg is the MSE loss used for score prediction, and
Lcls denotes the binary cross-entropy loss (BCE) used for
sensitive attribute classification where λ is a hyperparameter.
After the regressor gφ andmultimodal encoderFθ are updated
by using Ladv, and the adversary hψ is sequentially updated
by using Lcls. We employed a similar architecture to our
proposed method.
Euclidean Distance (L2): Instead of Wasserstein distance,

we used Euclidean distance between priv. and unpriv. in
the latent space. We employed a method of calculating the
Euclidean distance between groups within the latent space
and directly adding it to the loss function.
Maximum Mean Discrepancy (MMD) [43]: Domain

adaptive fairness approach that tries to minimize discrepancy
of fairness metrics between priv. and unpriv. domains by
applying MMD loss.

E. ARCHITECTURE AND IMPLEMENTATION DETAILS
The proposed model utilizes three distinct types of inputs:
video XV , audio XA, and text XT . To encode the video input
XV , we stacked multiple frames as input and applied them
to five 2D convolutional layers with max-pooling layers,
followed by a Long Short-Term Memory (LSTM) network
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FIGURE 5. Visualization results for prediction performance(SRCC) and the fairness metric(SPDD) using the HR dataset. The x-axis is 1-SPDD. The
lower the SPDD, the larger the value on the x-axis. The y-axis represents the value of SRCC. The more the result is located in the upper right corner,
the more the model is considered fairer and has better performance.

TABLE 4. Results of the HR dataset. The table presents a comprehensive and comparative analysis, offering a detailed examination and evaluation of the
performance outcomes achieved by the baselines and ours. By comparing respective results, the table facilitates a side-by-side comparison, shedding
light on the relative strengths and weaknesses of each approach.

with two hidden layers fV . For audio inputs XA, we employed
a stack of one fully connected layer and an LSTM with
two hidden layers fA. For text encoding, we utilized a pre-
trained BERT [41] followed by one fully connected layer
fT . The encoded feature from each input modality was then
concatenated and passed to both the adversary hψ and the
score regressor gφ . The score regressor and adversary were
composed of two fully connected layers with one ReLU
activation function.

For the HR dataset, we trained our model and the baselines
with a batch size m = 128. To prevent overfitting, we set
different learning rates for the regressor gφ and adversary hψ .

It is because adversary training is relatively easier compared
to regressor training. We used the AdamW [44] optimizer
with a learning rate ηreg = 10−3 for the regressor gφ and
learning rate ηcls = 10−4 for the adversary hψ . For the
FI dataset, we set a batch size m = 64 and optimized our
model and the baselines using AdamW with a learning rate
ηreg = 10−4 and ηcls = 10−5. In all datasets, we trained our
model and the baselines for 200 epochs.

In accordance with the experience gained from experi-
menting with various λW values, the hyperparameter λW
was set as 0.02. This setting showed the least decrease in
prediction performance and effectively improved the fairness
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FIGURE 6. Visualization results for prediction performance(SRCC) and the fairness metric(SPDD) using the FI dataset. The x-axis is 1-SPDD, and the
lower the SPDD, the larger the value on the x-axis. The y-axis represents the value of SRCC. The higher the result is located in the upper right corner,
the more fair and better the performance is.

TABLE 5. Results from the FI dataset. The table presents a comprehensive comparative analysis, offering a detailed examination and evaluation of the
performance outcomes achieved by both the baselines and ours. By comparing respective results, the table facilitates a side-by-side comparison,
shedding light on the relative strengths and weaknesses of each approach.

metrics among the settings we experimented with. We also
removed the information about the sensitive attribute by using
adversarial learning. The adversarial hyperparameter λAdv is
chosen among various values between 10−3 and 0.5 on a
logarithmic scale.

F. EVALUATION METRICS AND PROTOCOLS
To evaluate the regression performance of predicting scores,
we employed two correlation coefficients: the Pearson cor-
relation coefficient (PCC) and Spearman’s rank correlation
coefficient (SRCC). The PCC measures the degree of

association between two continuous variables, defined as:

PCC(Ỹ , Ŷ ) =
cov(Ỹ , Ŷ )
σỸσŶ

. (25)

where n represents the number of data points, x indicates
the predictions, ỹ indicates the target values, and x̄ and ȳ
represent the averages of the predictions, and the ground-
truth values, respectively. The range of PCC is between
−1 to 1, where −1 indicates a perfect negative linear
correlation, 1 indicates a perfect positive linear correlation,
and 0 indicates no linear correlation between variables.
In addition to the PCC, we utilized SRCC as an additional
measure of regression performance. SRCC measures sta-

122688 VOLUME 11, 2023



C. Kim et al.: Fairness-Aware Multimodal Learning in Automatic Video Interview Assessment

TABLE 6. PCA visualization of latent representations from baselines and ours using the HR and FI dataset; The center points of each group are calculated
as the average of the latent representations of priv . and unpriv . samples within the high-scoring and low-scoring groups. Purple and orange circles
indicate the regions where priv . and unpriv . samples within the high-scoring group are located in the latent space. While blue and brown circles indicate
the regions where priv . and unpriv . samples within the low-scoring group are located in the latent space.

tistical dependence between the ranking of two variables,
capturing both linear and non-linear relationships. SRCC is
defined as:

SRCC(Ỹ , Ŷ ) = PCC(R(Ỹ ),R(Ŷ )). (26)

where R represents a ranking variable.
To measure the fairness of our model, we used the fairness

metric SPDD. Furthermore, in our settings, we present a
fairness metric called SPEO (Strong Pairwise Equalized
Opportunity), which considers the true label similar to the
EO. Given a classifier gτ , the EO gap with respect to sensitive
attribute S is defined as

1EO(gτ ) = Eυ∼U ([0,1])|Pr
X
(Ŷ = 1|S = 1, Ỹ > υ)

− Pr
X
(Ŷ = 1|S = 0, Ỹ > υ)|. (27)

Consequently, the SPEO can be defined as

SPEO(η) = Eτ∼U ([0,1])1EO(gτ ), (28)

where U denotes uniform distribution and η is a score
function. We include SPEO as an additional fairness
metric to double-check that we are conducting fair
training.

In the context of fairness learning, there exists a trade-off
between fairness metrics and the metric of the target
task. For instance, the model may obtain a perfectly fair
prediction even if the prediction of the target task is incorrect.
For this reason, we selected the optimal model through
cross-validation.
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FIGURE 7. Trade-off scatter plot; The plots demonstrate the results obtained by varying the value of the λW . By setting a larger λW value, we can find
that the model shows more fair results, while a smaller λW value improves prediction performance. The λW values were set within the range of 0.03 to
0.5.

VI. EXPERIMENTAL RESULTS
A. COMPARISON WITH BASELINES
Table 4 presents the prediction performance of our model
and the baselines using the HR dataset, in terms of both the
PCC and SRCC for score prediction. It also includes fairness
metrics such as SPDD and SPEO. We report the average
scores and standard deviations across five different cross-
validation folds. Figure 5 is a scatter plot visualization of
SRCC and 1-SPDD for the HR dataset. Each point indicates
the performance of the model trained with a particular fold.

Table 4 and Figure 5 show that our proposed method
significantly outperforms all three baselines in terms of both
prediction correlations and fairness on the HR dataset in
various degrees of unfairness (represented by α) settings.
As the α value in the dataset used for model training
increases, the baselines show a decline in terms of both
prediction performance (SRCC) and an increase the fairness
metrics (SPDD). In contrast, Ours shows only a slight
decrease in both SRCC (less than 0.02) and a slight increase
in fairness metric (less than 0.01). Remarkably, we observe
that Ours consistently maintains low fairness scores even
when the dataset is extremely unfair (α = 4). Note that
when α = 4 in the HR dataset, the total number of data
becomes 1000, which can be considered a small dataset. As a
result, we can conclude that our methods work well in small
datasets. While DB and Adv also show better performance
than a Vanilla model, Ours surpasses them by a considerable
margin in terms of both SRCC and SPDD.

Additionally, it is well-known that a trade-off exists
between fairness metrics and prediction performance when
applying fairness-aware training. Interestingly, Ours not
only achieves performance gains in fairness metrics but
also demonstrates higher PCC and SRCC compared to the
baselines, which contradicts conventional wisdom.

To demonstrate the applicability of our proposedmethod to
various datasets, we conducted experiments on the FI dataset
and summarized the results in Table 5 and Figure 6. Similar to
the results on the HR dataset, Ours outperforms the baselines

in terms of fairness metrics. While the baselines show a
decrease in terms of fairness metrics (i.e., SPDD and SPEO
increase) as α increases, Ours successfully maintains low
SPDD and SPEO values. Additionally, it shows high PCC and
SRCC values compared to the baselines.

As the value of α increases, both our model and the
baselines exhibit a deterioration in prediction performance
and fairness metrics. This indicates that if the dataset contains
a significant bias, the model learns and predicts the bias,
resulting in more unfair outcomes. As shown in Table 1,
the SPDD value of the FI dataset with an α of 4 is 0.076.
The model trained on this dataset (α = 4) and tested with
a uniform test dataset yielded an SPDD value of 0.078,
suggesting that the model has learned and retained the bias.

In summary, our findings can be summarized as follows:
when fairness considerations are not taken into account in
the training phase, the extreme unfairness of the dataset
may result in biased predictions by the model. In contrast,
our method demonstrates the capability to mitigate extreme
unfairness while simultaneously maintaining reasonable
levels of prediction correlations.

B. VISUALIZATION IN LATENT SPACE
To verify whether our model has learned a fair representation,
we visualized the concatenated representation ZC obtained
through a multimodal encoder Fθ . To visually confirm the
representation, we perform dimensionality reduction using
Principle Component Analysis (PCA) to reduce the dimen-
sionality to 2. This allows us to visualize the representation
in a two-dimensional space.

Table 6 shows the visualization of latent representation,
produced by the baselines and ours from the HR and the
FI datasets. As observed in the Vanilla representation, there
is a clear distinction between the sensitive attributes. This
means that the distribution of latent representation ZC varies
depending on the sensitive attribute S. Similarly to the
Vanilla, the representations obtained through Adv and DB
exhibit a clear distinction between the sensitive attribute.
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TABLE 7. Ablation study: To investigate the impact of individual components on both the model’s performance and fairness metrics, we conducted an
ablation study by incrementally adding each component.

TABLE 8. Additional experiments: In order to validate the efficacy of our approach across diverse datasets, we conducted additional experiments using
the CelebA single-modal dataset and the adult tabular dataset.

However, Ours does not exhibit a clear visual distinction,
as we have obtained an independent representation ZC with
respect to the sensitive attribute.

We have not only visually demonstrated these findings
but also quantitatively measured them. We calculated the
centroid (ν) within the high and low-scoring groups based
on the sensitive attribute. Indeed, if the distance between
the centroid of priv. representations and the centroid of
unpriv. representations are small, it can be considered a
fair representation. Ours demonstrated the smallest distance
within the high-scoring and low-scoring groups. This can
be interpreted as the distribution of representation ZC is
relatively independent of the sensitive attribute.

C. FAIRNESS AND CORRELATION TRADE-OFF
It is known that there is a trade-off between prediction
performance and fairness metrics. Our proposed method
allows users to adjust this trade-off by modifying the weights
of the loss function.

Figure 7 represents the experimental results obtained by
varying the values of λW andmeasuring the SPDD and SRCC
in each λW . We assessed the results after conducting five
repeated experiments for each combination of various unfair
situations and different λW values. The results show that
as the value of λW increases, the fairness, represented by
1-SPDD, also increases. Conversely, as the λW decreases,
the SRCC tends to increase. By adjusting the λW parameter,
it becomes possible to address the trade-off between predic-
tion performance and fairness metrics, as demonstrated in this
method.

D. ABLATION STUDY
To assess the significance of specific architectural compo-
nents within the model, we conducted an ablation study.
Table 7 presents the results of the ablation study conducted on
the HR and FI datasets. First, results of Vanillamodel without
any regularizer are shown. Subsequently, the outcomes of
only utilizing the Wasserstein Distance (WD) as a regularizer
on the sensitive attribute as gender are demonstrated,
followed by the results of incorporating domain adaptation
(Ours) to eliminate gender-related information. The results
of HR dataset exhibit notable high values for PCC and SRCC
in WD-only trained results. On the other hand, on FI dataset,
our proposed approach demonstrates superior performance in
terms of PCC and SRCC. In both datasets, our method shows
better performance in terms of SPDD and SPEO.

E. ADDITIONAL EXPERIMENTS
To verify the robustness of our approach across various
datasets and different sensitive attributes, we conducted
experiments by introducing two additional datasets and
two distinct sensitive attributes. The utilized datasets for
the experiments include the CelebA dataset [45] and the
Adult Income Dataset [46]. This selection aims to ensure
the efficacy of our approach across both single-modal and
tabular data domains. The CelebA dataset contains 202,599
face images, each of resolution 178 × 218, with 40 binary
attributes. We consider binary classification tasks with two
different sensitive attributes: predicting attractiveness with
gender as a sensitive attribute and predicting attractiveness
with age as a sensitive attribute. The Adult income dataset
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contains 65,123 samples with 14 attributes and one binary
label indicating if an individual’s incoming exceeds 50K . For
the Adult income dataset, the goal is to predict whether an
individual’s income exceeds 50K , and the sensitive attributes
are gender and race.

Table 8 presents the results obtained from experiments
conducted using the CelebA and Adult income datasets.
Upon comparing with alternative baselines, our method
demonstrated the most favorable outcomes in terms of
the fairness metric, specifically SPDD, while showing
decent performance in accuracy. We can also investigate
that the SPDD is high when we use age as a sensitive
attribute. We assume that this is because the attrac-
tiveness is highly correlated with age. Nevertheless, our
method has shown the best results compared to baseline
methods.

VII. DISCUSSION AND CONCLUSION
In this paper, we present a novel approach for developing
a fair and accurate automatic interview assessment model.
Our proposed method involves minimizing the 1-Wasserstein
distance between predicted scores of different groups and
learning fair multimodal representations by leveraging gra-
dient reversal layers to dilute group information defined by
sensitive attributes. Our experiments show that our proposed
method outperforms existing methods in terms of accuracy
and fairness criteria, such as SPDD and SPEO.

To the best of our knowledge, our work is first to
focus on fairness in the context of automatic interview
assessment that involves multimodal features. Although
previous studies have explored fair automatic recruitment,
they have mostly been conducted on tabular or synthetic
datasets. Furthermore, we conducted extensive experiments
on a real-world job interview dataset called the HR dataset,
and a public benchmark dataset called the FI dataset.
We also found that our proposed method is robust to
the degree of unfairness in the training dataset, which
is a crucial factor for the practical applicability of the
method.

However, all of these solutions have a limitation in that
sensitive attributes need to be labeled. In recent privacy-
preserving environments, there exist datasets that do not have
labeled sensitive attributes. Due to the enactment of the E.U.
general data protection regulation, data protection laws have
been strengthened, making it more challenging to collect
personal information such as age, gender, and race. Even in
the absence of that information, it is necessary to develop
fair models. We consider it as future work. Also, we tested
our method considering only the most commonly used AVI
method. Therefore, we plan to conduct further research by
considering a wider range of interview methods in future
studies and see how they affect fairness. Moreover, there
exists a research area regarding fair sharing that aims to
distribute goods fairly among users or groups. We plan to
work with various perspectives in fairness in the future [47],
[48], [49].
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